References
-
1.
Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444, 587–591 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
-
2.
Bromley, A. G. Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 20, 29–45 (1998).
MathSciNet MATH Article Google Scholar
-
3.
Bush, V. The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931).
MATH Article Google Scholar
-
4.
Roy, K., Jaiswal, A. Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
-
5.
Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).
ADS CAS PubMed Article PubMed Central Google Scholar
-
6.
McEvoy, M. A. Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
CAS PubMed Article PubMed Central Google Scholar
-
7.
Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).
MathSciNet PubMed MATH Article PubMed Central Google Scholar
-
8.
Müller, V. C. Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).
PubMed Article PubMed Central Google Scholar
-
9.
Laschi, C. Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).
Article Google Scholar
-
10.
Caulfield, H. J. Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).
CAS Article Google Scholar
-
11.
Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).
ADS CAS Article Google Scholar
-
12.
Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
-
13.
Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
-
14.
Katsikis, G., Cybulski, J. S. Prakash, M. Synchronous universal droplet logic and control. Nat. Phys. 11, 588–596 (2015).
CAS Article Google Scholar
-
15.
Weaver, J. A., Melin, J., Stark, D., Quake, S. R. Horowitz, M. A. Static control logic for microfluidic devices using pressure-gain valves. Nat. Phys. 6, 218–223 (2010).
CAS Article Google Scholar
-
16.
Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).
CAS PubMed Article PubMed Central Google Scholar
-
17.
Woodhouse, F. G. Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).
ADS PubMed PubMed Central Article Google Scholar
-
18.
Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
-
19.
Volkov, A. G., Adesina, T., Markin, V. S. Jovanov, E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol. 146, 323–324 (2008).
Article CAS Google Scholar
-
20.
Yang, R., Lenaghan, S. C., Zhang, M. Xia, L. A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal. Behav. 5, 968–978 (2010).
PubMed PubMed Central Article Google Scholar
-
21.
Jiang, Y., Korpas, L. M. Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 10, 128 (2019). Demonstrates environmentally responsive mechanical logic by using bistable beam mechanisms and stimuli-responsive materials.
ADS PubMed PubMed Central Article CAS Google Scholar
-
22.
Horsman, C., Stepney, S., Wagner, R. C. Kendon, V. When does a physical system compute? Proc. Royal Soc. Lond. A 470, 20140182 (2014). Provides a framework for unconventional computing, distinguishing abstract computation from physical embodiment.
ADS MATH Google Scholar
-
23.
Feynman, R. P. Feynman Lectures on Computation (CRC Press, 2018).
-
24.
MacLennan, B. J. Natural computation and non-Turing models of computation. Theor. Comput. Sci. 317, 115–145 (2004).
MathSciNet MATH Article Google Scholar
-
25.
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
ADS MathSciNet CAS PubMed MATH Article PubMed Central Google Scholar
-
26.
Mohammadi Estakhri, N., Edwards, B. Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).
ADS MathSciNet CAS PubMed MATH Article PubMed Central Google Scholar
-
27.
Zangeneh-Nejad, F. Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
-
28.
Howell, L. L. Compliant Mechanisms (John Wiley Sons, 2001).
-
29.
Qiu, J., Lang, J. H. Slocum, A. H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004).
Article Google Scholar
-
30.
Oh, Y. S. Kota, S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms. J. Mech. Des. 131, 021002 (2009).
Article Google Scholar
-
31.
Cazottes, P., Fernandes, A., Pouget, J. Hafez, M. Bistable buckled beam: modeling of actuating force and experimental validations. J. Mech. Des. 131, 101001 (2009).
Article Google Scholar
-
32.
Camescasse, B., Fernandes, A. Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).
Article Google Scholar
-
33.
Wu, C. C., Lin, M. J. Chen, R. The derivation of a bistable criterion for double V-beam mechanisms. J. Micromech. Microeng. 23, 115005 (2013).
ADS Article Google Scholar
-
34.
Ion, A., Wall, L., Kovacs, R. Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 977–988 (ACM, 2017). Demonstrates the use of 3D-printed modular bistable elements to perform digital logic, including ‘combination lock’ mechanisms.
-
35.
Song, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019). Realizes a full set of digital mechanical logic gates via 3D printing of bistable flexural beams.
ADS PubMed PubMed Central Article Google Scholar
-
36.
Hälg, B. On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Dev. 37, 2230–2236 (1990). Provides an early example of the use of constrained beams to represent binary information.
ADS Article Google Scholar
-
37.
Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016). Demonstrates mechanical diodes and logic gates based on the propagation of stable, nonlinear transition waves in architected soft systems of coupled bistable beams.
ADS CAS PubMed PubMed Central Article Google Scholar
-
38.
Yasuda, H., Tachi, T., Lee, M. Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017). Demonstrates volumetric origami cells with tuneable stability and stiffness that store bit information in a bistable potential-energy landscape.
ADS PubMed PubMed Central Article CAS Google Scholar
-
39.
Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
ADS Article Google Scholar
-
40.
Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
-
41.
Saito, K., Tsukahara, A. Okabe, Y. New deployable structures based on an elastic origami model. J. Mech. Des. 137, 021402 (2015).
Article Google Scholar
-
42.
Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. Yongming, T. Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).
Article Google Scholar
-
43.
Waitukaitis, S., Menaut, R., Chen, B. G. van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).
ADS PubMed Article CAS PubMed Central Google Scholar
-
44.
Yasuda, H. Yang, J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
-
45.
Ishida, S., Uchida, H., Shimosaka, H. Hagiwara, I. Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. J. Vib. Acoust. 139, 031015 (2017).
Article Google Scholar
-
46.
Fang, H., Li, S., Ji, H. Wang, K. W. Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).
ADS MathSciNet PubMed Article PubMed Central Google Scholar
-
47.
Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
-
48.
Faber, J. A., Arrieta, A. F. Studart, A. R. Bioinspired spring origami. Science 359, 1386–1391 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
-
49.
Filipov, E. T. Redoutey, M. Mechanical characteristics of the bistable origami hypar. Extreme Mech. Lett. 25, 16–26 (2018).
Article Google Scholar
-
50.
Sengupta, S. Li, S. Harnessing the anisotropic multistability of stackedorigami mechanical metamaterials for effective modulus programming. J. Intell. Mater. Syst. Struct. 29, 2933–2945 (2018).
Article Google Scholar
-
51.
Liu, K., Tachi, T. Paulino, G. H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
-
52.
Bhovad, P., Kaufmann, J. Li, S. Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019).
Article Google Scholar
-
53.
Yang, N., Zhang, M., Zhu, R. Niu, X. D. Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. Sci. Rep. 9, 18812 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
-
54.
Wang, L.-C. et al. Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).
CAS Article Google Scholar
-
55.
Treml, B., Gillman, A., Buskohl, P. Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018). Presents an environmentally responsive origami platform using the waterbomb fold pattern as a mechanical storage device that writes, erases and rewrites itself in response to a time-varying environmental signal.
ADS CAS PubMed PubMed Central Article Google Scholar
-
56.
Glusker, M., Hogan, D. M. Vass, P. The ternary calculating machine of Thomas Fowler. IEEE Ann. Hist. Comput. 27, 4–22 (2005).
MathSciNet Article Google Scholar
-
57.
Hayes, B. Computing science: third base. Am. Sci. 89, 490–494 (2001).
Article Google Scholar
-
58.
Yasuda, H., Korpas, L. M. Raney, J. R. Transition waves and formation of domain walls in multistable mechanical metamaterials. Phys. Rev. Appl. 13, 054067 (2020).
ADS CAS Article Google Scholar
-
59.
Mahboob, I. Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 3, 275–279 (2008). Demonstrates a volatile mechanical memory device in which binary information is abstracted in the phase offset of the beam oscillation.
CAS PubMed Article PubMed Central Google Scholar
-
60.
Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587 (2004).
ADS CAS Article Google Scholar
-
61.
Noh, H., Shim, S. B., Jung, M., Khim, Z. G. Kim, J. A mechanical memory with a dc modulation of nonlinear resonance. Appl. Phys. Lett. 97, 033116 (2010).
ADS Article CAS Google Scholar
-
62.
Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A. Yamaguchi, H. Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
-
63.
Ahmed, S. et al. A compact adder and reprogrammable logic gate using micro-electromechanical resonators with partial electrodes. IEEE Trans. Circuits Syst. II 66, 2057–2061 (2019).
Article Google Scholar
-
64.
Serra-Garcia, M. Turing-complete mechanical processor via automated nonlinear system design. Phys. Rev. E 100, 042202 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
-
65.
Venstra, W. J., Westra, H. J. R. Van Der Zant, H. S. J. Mechanical stiffening, bistability, and bit operations in a microcantilever. Appl. Phys. Lett. 97, 193107 (2010). Utilizes nonlinear dynamics in microcantilevers to demonstrate bit operations in volatile dynamic systems through modulation of the driving frequency.
ADS Article CAS Google Scholar
-
66.
Zhang, S., Yin, L. Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).
ADS PubMed Article CAS PubMed Central Google Scholar
-
67.
Nesterenko, V. F. Dynamics of Heterogeneous Materials (Springer-Verlag, 2001).
-
68.
Liang, B., Guo, X. S., Tu, J., Zhang, D. Cheng, J. C. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
-
69.
Li, N. et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).
ADS Article Google Scholar
-
70.
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
-
71.
Kim, E. Yang, J. Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps. J. Mech. Phys. Solids 71, 33–45 (2014).
ADS MATH Article Google Scholar
-
72.
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
-
73.
Zheng, B. Xu, J. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps. J. Phys. D 50, 465601 (2017).
Article CAS Google Scholar
-
74.
Bilal, O. R., Foehr, A. Daraio, C. Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl Acad. Sci. USA 114, 4603–4606 (2017). Uses geometric nonlinearities to switch and amplify elastic vibrations via magnetic coupling, allowing logic and simple calculations.
ADS CAS PubMed PubMed Central Article Google Scholar
-
75.
Li, F., Anzel, P., Yang, J., Kevrekidis, P. G. Daraio, C. Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014). Provides an example of a mechanical metamaterial that allows logic operations via nonlinear dynamics in a granular chain.
ADS CAS PubMed Article PubMed Central Google Scholar
-
76.
Li, X. F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).
ADS PubMed Article CAS PubMed Central Google Scholar
-
77.
Babaee, S., Viard, N., Wang, P., Fang, N. X. Bertoldi, K. Harnessing deformation to switch on and off the propagation of sound. Adv. Mater. 28, 1631–1635 (2016).
CAS PubMed Article PubMed Central Google Scholar
-
78.
Merkle, R. C. Two types of mechanical reversible logic. Nanotechnology 4, 114–131 (1993).
ADS Article Google Scholar
-
79.
Howard, M. LEGO Logic Gates and Mechanical Computing https://www.randomwraith.com/logic.html (accessed 19 August 2020).
-
80.
Saharia, K. Lego Logic http://web.archive.org/web/20140206173429/http://keshavsaharia.com/2011/05/29/lego-logic (accessed 19 August 2020).
-
81.
Merkle, R. C. et al. Mechanical computing systems using only links and rotary joints. J. Mech. Robot. 10, 061006 (2018).
Article Google Scholar
-
82.
Berwind, M. F., Kamas, A. Eberl, C. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv. Eng. Mater. 20, 1800771 (2018).
Article Google Scholar
-
83.
Zhang, T., Cheng, Y., Guo, J. Z., Xu, J. Y. Liu, X. J. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams. Appl. Phys. Lett. 106, 113503 (2015).
ADS Article CAS Google Scholar
-
84.
Wu, Q., Cui, C., Bertrand, T., Shattuck, M. D. O’Hern, C. S. Active acoustic switches using two-dimensional granular crystals. Phys. Rev. E 99, 062901 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
-
85.
Faber, J. A., Udani, J. P., Riley, K. S., Studart, A. R. Arrieta, A. F. Dome-patterned metamaterial sheets. Adv. Sci. 7, 2001955 (2020).
CAS Article Google Scholar
-
86.
Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).
CAS PubMed Article PubMed Central Google Scholar
-
87.
Coulais, C., Teomy, E., de Reus, K., Shokef, Y. van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
-
88.
Frenzel, T., Kadic, M. Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
-
89.
Kane, C. L. Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).
CAS Article Google Scholar
-
90.
Süsstrunk, R. Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
ADS PubMed Article CAS PubMed Central Google Scholar
-
91.
Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
-
92.
Paulose, J., Meeussen, A. S. Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
-
93.
Chaunsali, R., Chen, C. W. Yang, J. Experimental demonstration of topological waveguiding in elastic plates with local resonators. New J. Phys. 20, 113036 (2018).
ADS CAS Article Google Scholar
-
94.
Liu, B. et al. Topological kinematics of origami metamaterials. Nat. Phys. 14, 811–815 (2018).
CAS Article Google Scholar
-
95.
Shi, X., Chaunsali, R., Li, F. Yang, J. Elastic Weyl points and surface arc states in three-dimensional structures. Phys. Rev. Appl. 12, 024058 (2019).
ADS CAS Article Google Scholar
-
96.
Bilal, O. R., Süsstrunk, R., Daraio, C. Huber, S. D. Intrinsically polar elastic metamaterials. Adv. Mater. 29, 1700540 (2017).
Article CAS Google Scholar
-
97.
Sigmund, O. On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25, 493–524 (1997).
Article Google Scholar
-
98.
Howell, L. L., Midha, A. Norton, T. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. J. Mech. Des. 118, 126–131 (1996).
Article Google Scholar
-
99.
Rocks, J. W. et al. Designing allostery-inspired response in mechanical networks. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).
CAS PubMed PubMed Central Article Google Scholar
-
100.
Bielefeldt, B. R., Akleman, E., Reich, G. W., Beran, P. S. Hartl, D. J. L-system-generated mechanism topology optimization using graph-based interpretation. J. Mech. Robot. 11, 020905 (2019).
Article Google Scholar
-
101.
Wilson, K. E., Henke, E.-F. M., Slipher, G. A. Anderson, I. A. Rubbery logic gates. Extreme Mech. Lett. 9, 188–194 (2016).
Article Google Scholar
-
102.
Chau, N., Slipher, G. A., O’Brien, B. M., Mrozek, R. A. Anderson, I. A. A solid-state dielectric elastomer switch for soft logic. Appl. Phys. Lett. 108, 103506 (2016).
ADS Article CAS Google Scholar
-
103.
Wissman, J., Dickey, M. D. Majidi, C. Field-controlled electrical switch with liquid metal. Adv. Sci. 4, 1700169 (2017).
Article CAS Google Scholar
-
104.
Le Ferrand, H., Studart, A. R. Arrieta, A. F. Filtered mechanosensing using snapping composites with embedded mechano-electrical transduction. ACS Nano 13, 4752–4760 (2019).
PubMed Article CAS PubMed Central Google Scholar
-
105.
Abdullah, A. M., Braun, P. V. Hsia, K. J. Programmable shape transformation of elastic spherical domes. Soft Matter 12, 6184–6195 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
-
106.
Chen, T., Bilal, O. R., Shea, K. Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl Acad. Sci. USA 115, 5698–5702 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
-
107.
Ambulo, C. P. et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).
CAS PubMed Article PubMed Central Google Scholar
-
108.
Wani, O. M., Zeng, H. Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
-
109.
Deirram, N., Zhang, C., Kermaniyan, S. S., Johnston, A. P. R. Such, G. K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 40, e1800917 (2019).
PubMed Article CAS PubMed Central Google Scholar
-
110.
Loukaides, E. G., Smoukov, S. K. Seffen, K. A. Magnetic actuation and transition shapes of a bistable spherical cap. Int. J. Smart Nano Mater. 5, 270–282 (2014).
CAS Article Google Scholar
-
111.
Kim, Y., Yuk, H., Zhao, R., Chester, S. A. Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
-
112.
Jackson, J. A. et al. Field responsive mechanical metamaterials. Sci. Adv. 4, eaau6419 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
-
113.
Jin, Y. et al. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
-
114.
Hu, W., Lum, G. Z., Mastrangeli, M. Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
-
115.
Zhao, H., O’Brien, K., Li, S. Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1, eaai7529 (2016).
PubMed Article PubMed Central Google Scholar
-
116.
Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, e1706383 (2018).
PubMed Article CAS PubMed Central Google Scholar
-
117.
Lee, T. H., Bhunia, S. Mehregany, M. Electromechanical computing at 500 degrees C with silicon carbide. Science 329, 1316–1318 (2010). Demonstrates the capability of electromechanical switches at high temperature.
ADS CAS PubMed Article PubMed Central Google Scholar
-
118.
Blakey, E. in Advances in Unconventional Computing. Emergence, Complexity and Computation (ed. Adamatzky, A.) 165–182 (Springer, 2017).
-
119.
Roukes, M. L. Mechanical computation, redux? In IEDM Technical Digest. IEEE International Electron Devices Meeting 2004 539–542 (IEEE, 2004).
-
120.
Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
-
121.
Pott, B. V. et al. Mechanical computing redux: relays for integrated circuit applications. Proc. IEEE 98, 2076–2094 (2010).
CAS Article Google Scholar
-
122.
Kam, H., Liu, T. J. K., Stojanović, V., Marković, D. Alon, E. Design, optimization, and scaling of MEM relays for ultra-low-power digital logic. IEEE Trans. Electron Dev. 58, 236–250 (2011).
ADS Article Google Scholar
-
123.
Wang, J. Perez, L. The effectiveness of data augmentation in image classification using deep learning. Preprint at https://arxiv.org/abs/1712.04621 (2017).
-
124.
Houthooft, R. et al. VIME: variational information maximizing exploration. Adv. Neural Inf. Process. Syst. 29, 1109–1117 (2016).
Google Scholar
-
125.
Null, L. Lobur, J. The Essentials of Computer Organization and Architecture (Jones Bartlett Publishers, 2015).
-
126.
Sauder, J. et al. Automation Rover for Extreme Environments: NASA Innovative Advanced Concepts (NIAC) Phase I Final Report https://www.nasa.gov/sites/default/files/atoms/files/niac_2016_phasei_saunder_aree_tagged.pdf (NASA, 2017).
Download references